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ABSTRACT Inspection systems measure every part produced. If the

measurement is outside of the inspection limits, then that part is measured

again. To assess the quality of these measurement systems, traditionally

gauge repeatability and reproducibility (R&R) studies are preformed.

Instead of performing a gauge R&R study, we present a method of assessing

these measurement systems with operational data from an inspection

system. Using the inspection data, we provide a justification for the pooled

variance of the measured values for each part that has two measurements.

The bias and variance of this analysis of variance (ANOVA) estimator are

derived using properties of the truncated normal distribution. We show that

the ANOVA estimator has a relatively small bias and high efficiency when

compared with the maximum likelihood estimator for most common values

of c or GRR%, which is the measurement system standard deviation divided

by total inspection system standard deviation.

KEYWORDS gauge repeatability, inspection system, measurement system

assessment, reproducibility study

INTRODUCTION

Many manufacturers require parts to pass an inspection system before

being shipped. The purpose of the inspection is to prevent customers from

receiving poor quality parts. The ideal system rejects each part with a true

value outside of inspection limits, but due to measurement error, the actual

system rejects parts with an observed or measured characteristic outside of

these limits. Thus, an inspection system will reject some good parts and

accept some bad parts. Accepting and rejecting the wrong parts can be

costly, making it essential to verify or quantify the performance of the

inspection system. Measurement variability explains why inspection limits

are often tighter than the specification limits.

In general, an inspection system has two parts, a measurement system

and an inspection protocol. The measurement system is the method or

device used to measure the characteristic of interest. The inspection proto-

col is the set of decision rules for the inspection system. Figure 1 gives an

example of a commonly used protocol, but there are many possibilities.

The performance of any inspection system is highly reliant on the

measurement system used to measure the characteristic of interest. To assess
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a continuous measurement system, a gauge repeat-

ability and reproducibility (R&R) is typically performed

(see Automotive Industry Action Group 2002 and

Burdick et al. 2003). Other pertinent references are

Wheeler and Lyday (1984) and Montgomery (2000).

Because these studies are conducted off-line, they

can be costly and may not reflect the properties of

the measurement system during production.

In some industries, such as integrated circuit or elec-

tronic devicemanufacturing, and in testing flammability

of plastics and other chemically based products, it is

common to use the protocol given in Figure 1. The

inspection protocol starts with each part being mea-

sured. This first measurement is called the production

test. The test result can be either pass or fail based on

whether the measured value lies within the inspection

limits or not. A pass allows the part to be shipped,

whereas a failuremeans the part is retested. Commonly,

this retest is carried out immediately, and if the part

passes the second test it is shipped. Otherwise, it is sent

to be repaired, scrapped, or set aside for investigation.

Using the inspection protocol shown in Figure 1,

some parts are measured twice. As a result it is

possible to carry out an assessment of the measurement

system using data from the inspection system alone

and avoid off-line studies such as a standard gauge

R&R. The data from the inspection system have a

special form because a part is measured a second

time if and only if the first measurement falls outside

the pass region, denoted B¼ (LIL, UIL), where (LIL)

and (UIL) are the lower and upper inspection limits.

The possible outcomes for any part are (PASS),

(FAIL, PASS) and (FAIL, FAIL).

Suppose, for example, we have the results of an

inspection system with limits (95, 110) for 100 parts.

Of these, 17 have second measurements. The data

are shown in two tables. Table 1 gives the produc-

tion measurements and Table 2 gives the repeated

measurements. The first measurements or produc-

tion data average and standard deviation are 100.1

and 4.86, respectively.

Generally, any existing process operates well, so

we assume that the majority of the observed measure-

ments are within the inspection limits. Thus, there are

typically a large number of first measurements and a

relatively small number of second measurements.

We use the following notation. The production

data, the first measurement from each of n1 parts,

is denoted by fy11; y21; . . . ; yn11g. For the retest data,

we use S, a subset of {1, 2, . . . , n1}, to indicate all the

parts that have the failed production test so that

yi1 62B. Suppose there are n2 such parts. The retest

data, the second measurements, are denoted by

{yi2, i2 S}.

To model an inspection system, we follow

Burdick et al. (2003) and Doganaksoy (2000) by

assuming that a normal random effects model [1]

describes the observed characteristics. The model is

Yij ¼ Pi þ Eij ½1�

TABLE 1 100 Production Test Observations or 1st Measurements

103.6 100.2 107.6 97.4 92.4 96.1 97.3 102.1 95.2 101.6

96.8 105.8 100.9 101.6 105.5 107.6 112.9 104.2 104.3 91.9

105.5 96.0 92.9 101.1 92.6 94.9 97.7 98.8 105.0 104.2

105.3 104.4 99.5 103.1 101.5 93.8 101.6 99.4 101.2 98.9

100.6 105.9 103.9 98.3 99.5 98.0 98.1 97.3 100.9 93.9

96.5 97.8 98.8 100.3 99.1 93.6 107.1 85.7 107.2 101.5

100.1 97.9 107.8 99.8 104.0 99.3 96.8 95.8 103.1 100.4

112.2 97.8 95.3 97.5 101.5 99.1 107.9 111.5 89.5 91.9

93.8 101.6 99.2 98.1 99.8 103.9 101.2 103.1 102.4 93.3

95.6 96.9 97.3 94.5 104.1 98.6 104.4 98.3 105.8 100.6

FIGURE 1 Typical inspection protocol.
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where Pi is a random variable representing the

possible values for the true dimension of part i

(i¼ 1, . . . , n) and Eij is a random variable represent-

ing the error on each measurement (j¼ 1, 2) for

part i. We assume that the part effects Pi are indepen-

dent and identically distributed normal random

variables with mean l and variance r2p, the measure-

ments errors Eij are independent and identically

distributed normal random variables with mean zero

and variance r2m, and P and E are mutually indepen-

dent. The variance of Yi1, called the total variation, is

r2t ¼ r2p þ r2m. By adopting model [1], we assume that

l, rp, and rm are constant over the time needed to

conduct the investigation and that rm is constant

across true part dimensions.

We also assume that the measurement system has

no material operator effects. This contrasts with what

is typically assumed in the literature (see Burdick

et al. 2003), but examples with no or little operator

error are common. For instance, in one example,

piston diameters were inspected by an inline gauge

with automated part handling. Using manufacturing

jargon, with no operator effects rm captures

measurement repeatability but not reproducibility.

Burdick et al. (2003) described a variety of metrics

used to quantify measurement system quality or

reliability. The metric we use for this article is the

gauge repeatability labeled as %GRR or c. In terms

of the model parameters, c is defined as

c ¼ rm
rt

: ½2�

The Automotive Industry Action Group (2002)

classifies a measurement system as (1) acceptable, if

c< 0.1; (2) needs improvements, if 0.1< c< 0.3; or

(3) is not acceptable, if c> 0.3. Any reasonable

measurement system used for 100% inspection has

c< 0.5.

This article provides justification for using the

ANOVA estimator when assessing the measurement

system using repeated measurements from units that

fail an inspection system. Note that our purpose is

not to assess or try to optimize the inspection proto-

col. We assume the inspection protocol is described

by Figure 1.

The ANOVA estimator is based on the pooled

variance of the measured values for each part that

has two measurements. We derive the bias and

variance of the estimator using properties of the

truncated normal distribution. We compare the root

mean square errors of the ANOVA and maximum like-

lihood estimator (MLE). We show that the ANOVA

estimator has a relatively small bias and high efficiency

when compared to the maximum likelihood estimator

for most common values of c. Finally, we consider

some other applications for this assessment method.

MEASUREMENT SYSTEM ANALYSIS

WITH INSPECTION DATA

Two methods of analysis are presented and com-

pared: analysis of variance (ANOVA) and maximum

likelihood (ML). Although interest lies in estimating

c, two other parameters r2t and l are unknown and

need to be estimated. To estimate these additional

parameters, the ANOVA procedure uses the first

measurements—that is, the production data—only.

In contrast, the ML procedure uses all the data.

ANOVA

A natural estimate of the measurement variation

r2m is the average within-part variance from those

parts with two measurements. We estimate r2t by

the sample variance of all the first measurements.

The ANOVA estimate for the %GRR, denoted as ĉca, is

ĉca ¼
ffiffiffiffiffi
s2m
s21

s
¼ sm

s1
½3�

where s21 ¼ 1
n1�1

Pn1

i ðyi1 � �yy:1Þ
2 is the production data

variance, s2m ¼ 1
n2

P
i2S

P2
j¼1ðyij � �yyi:Þ

2 is the average

variation within parts with two measurements,

�yyi: ¼ 1
2 ðyi1 þ yi2Þ is the average for any part i with

TABLE 2 From the 100 Production Test Observations, 17 2nd

Measurements Where Taken

Part # 1st 2nd Part # 1st 2nd

5 92.4 91.3 71 112.2 111.8

17 112.9 111.1 78 111.5 110.8

20 91.9 92.2 79 89.5 88.8

23 92.9 93.3 80 91.9 91.1

25 92.6 94.1 81 93.8 95.4

26 94.9 94.2 90 93.3 90.8

36 93.8 92.4 94 94.5 93.6

50 93.9 92.9

56 93.6 92.2

58 85.7 84.6
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two measurements, and �yy:1 ¼ 1
n1

Pn1

i yi1 is the produc-

tion data average. In the corresponding estimator ecca,
each yij is replaced with the corresponding random

variable Yij from model [1]. Note that we use a circum-

flex (̂ ) to overscore a parameter to denote the estimate

(a number) and an overscore tilde (�) to denote the

corresponding estimator (a random variable).

To find the expectation and variance of the esti-

mator ecca, we note that the distribution of the second

measurement, conditional on the first measurement,

is given by

Yi2jðYi1 ¼ yi1Þ � N ½lþ ð1� c2Þðyi1 � lÞ;r2t c2ð2� c2Þ�
½4�

and when a second measurement occurs, the first

measurement is outside the inspection limits. This

means that if there is a second measurement, the

distribution of the first measurement, Yi1, is a trun-

cated N ðl;r2i Þ such that Yi1 62B. By conditioning on

the first measurements, we can determine the expec-

tation of S2m as

E½S2m� ¼ r2t c
2 1� c2

b1
2

� �
½5�

and the variance of S2m is

varðS2mÞ ¼
2r4t c

4

n2
1� c2b1 þ

1

8
c4ð3b1 � b21 � b3Þ

� �

� 2r4t c
4

n2
ð1� c2b1Þ ½6�

where bi is defined in Eq. [A3] in the Appendix. The

derivation of both variance and expectation are

shown in the appendix. The variance in Eq. [6] can

be approximated by the right-most term because

the contribution of the term 1
8 c

4ð3b1 � b21 � b3Þ is

small. This simplification shows that variance of S2m
is inflated by (1� c2b1) relative to measuring any part

twice. Because the variation from two independent

measurements on a part estimates the measurement

variation r2m ¼ r2t c
2 and has a v21 distribution, the

variance of this estimator is 2r2m ¼ 2r2t c
2.

The covariance between, S2m and S21 is near 0

because c< 0.5 and n1 is large. We can apply the

delta method (see Stuart and Ord l998) to find the

approximate expectation and variance of ecca. We get

E½ecca� � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

b1
2

r
� c� c3

b1
4
; and ½7�

varðeccaÞ � c2

2

1� c2 b1
2

n1 � 1
þ 1

n2

1� c2b1
1� c2b12

" #( )

� c2

2

1

n1 � 1
þ 1

n2

� �
1� c2

b1
2

� �
:

½8�

Equation [7] shows that ecca is biased. Figure 2

shows the bias, c3b1=4, as a function of the standar-

dized inspection limits a1 ¼ LIL�l
rt

; a2 ¼ UIL�l
rt

� �
and

c. Note that the vertical axis is a2� a1. For example,

if c is 0.2 and (�a, a)¼ (�2,2), then we find the point

(�2, 4) on the left panel of Figure 2 to obtain b1¼�5

and then on the right panel, we find the bias to be

�0.01.

For one-sided inspection limits, b1 can similarly be

determined from the left panel of Figure 2 because b1
is the same for limits of the form (�k, k), (�1, k),

and (�k, 1). For example, to find b1 when the stan-

dardized inspection limits are (�1, 1.5), we look up

the point a1¼�1.5 and a2� a1¼ 2� 1.5¼ 3 on the

left panel of Figure 2.

We analyze the example presented in the intro-

duction using the above method. From Tables 1

and 2, we have s1¼ 4.86, sm¼ 0.851, n1¼ 100, and

n2¼ 17. Thus, the ANOVA estimate, bcca, from [3] is

0.175. Using Table 1, we estimate b1 for our example

as �2.05. This estimate is useful in determining the

approximate bias of the ANOVA estimator. In

Figure 2, viewing the line along b1¼�2.05 we can

see how the bias for this estimator depends on c.
Additionally, from [8] the standard error of bcc can be

approximated as 0.033.

Maximum Likelihood

The log-likelihood for the data is the sum of

two log-likelihoods: l1ðl;r2t Þ, the likelihood of the

FIGURE 2 The left panel gives b1 for different values of the

standardized inspection limits. The right panel is the bias of ecca
as a function of c and b1.
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production data, and l21ðl;r2t ; cjyi1; i 2 S1Þ, the

likelihood of the retest data given the production data.

The distribution of the production data is indepen-

dent N ðl;r2t Þ. The distribution of Yi2 given Yi1¼ yi1
is given in [4]. Thus, the two log-likelihoods are

l1ðl;r2t Þ

¼ �n1

2
logr2t �

1

2r2t
n1S

2
1 þ n1ð�yy:1 � lÞ2

� 	
and

½9�

l21ðc; l; r2t jyi1; i2S1Þ

¼ �n2

2
log½r2t c2ð2� c2Þ�

� 1

2

P
i2S ½yi2 � l� ð1� c2Þðyi1 � lÞ�2

r2t c
2ð2� c2Þ ½10�

The complete log-likelihood for the inspection

process is the sum of the two log-likelihoods [9]

and [10]. To get the maximum likelihood estimates

(MLEs) of l, r2t , and c, we numerically maximize

the complete log-likelihood.

Asymptotic standard errors for the estimators can be

obtained from the inverted Fisher information matrix

with the parameters replaced by their estimates. The

Fisher information is obtained by taking the expecta-

tion of �1 times the log-likelihood second derivatives.

The expectations depend on the distribution of the

observations. For retest data, the distribution of the

second measurements Yi2 is given in [4] and the first

measurements Yi1 have a truncated N ðl;r2t Þ with Yi1
outside the inspection limits. Corresponding to the

two components of the log-likelihood, the Fisher infor-

mation is the sum of the two matrices, J1 and J21. Tak-

ing derivatives and applying expectations, we obtain

J1ðl; r2t ;qÞ ¼ n1

1
r2t

0 0

0 1
2r4t

0

0 0 0

0
B@

1
CA and ½11�

J21ðl;r2t ; cÞ

¼ n2

c2

r2t ð2�c2Þ 0 � 2b0c
rð2�c2Þ

0 1
2r4

2ð1�cÞð1þcÞ
r2cð2�c2Þ

� 2b0c
rð2�c2Þ

2ð1�cÞð1þcÞ
r2cð2�c2Þ 4c2ð2� c2Þð�b1 � 1Þ þ 8

c2ð2�c2Þ2

2
6664

3
7775:

½12�

The Fisher information in [12] is obtained using the

properties of conditional expectation and themoments

given in the Appendix.

The asymptotic variance of the MLE for c can be

obtained by inverting the matrix J1þ J21. In general,

to get a reasonable number of retests, we need a

large number of production tests n1. We can simplify

the calculations if we let n1 tend to infinity, so that

the asymptotic variance of the maximum likelihood

estimator for c becomes

varðeccmleÞ �
1

4n2

c2ð2� c2Þ2

½c2ð2� c2Þð�b1 � 1Þ þ 2� ½13�

This is also the variance we get by assuming that l
and rt are known.

Applying maximum likelihood to our example, we

get estimates for l, r2t , and c of (100.0, 24.03, 0.171),
respectively. The standard error for the maximum

likelihood estimator for c is 0.0295.

In Figure 3, we compare the mean squared errors

(MSE) of the MLE and ANOVA estimator as given by

[13] and [8] as functions of c and b1. The figure

shows, as expected, that the MLE is more efficient.

However, when c� .1 the two estimators are almost

equivalent, and when .1� c� .3, the MLE is only

slightly better than the ANOVA. When c� .3, the

ANOVA estimator performs poorly relative to the

MLE. Using simulation we confirmed the results from

Figure 3 and the MLE’s unbiasedness.

Given the cost and complexity of finding the MLE,

we recommend the ANOVA estimate in most

situations. Also, the ANOVA estimates can be quickly

calculated from the summary statistics generated by

statistical software such as JMP (SAS Institute, Inc.)

or MINITAB (Minitab, Inc.).

NONNORMALITY

The results we obtained were derived assuming

normality of both the part and measurement distrbu-

tion. We present a small sensitivity analysis of the

normality assumption on the part distribution.

FIGURE 3 The ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðeccaÞ=MSEðeccmleÞ

p
by c and b1.
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Because the inspection system measures every

part produced, we should be able to detect any

nonnormality in the observed distribution and then

change our analysis to compensate for this.

In the simulation, the part distribution was switched

to a Student’s t-distribution with 5 degrees of freedom

(t5). Because, the variance of a t5 is 5=3, the random

variables simulated from this distribution were scaled

by
ffiffiffiffiffiffiffiffi
3=5

p
. We compare the standard deviations from

the simulation to the theoretical standard deviations

we would obtain if the part distribution was normal.

The smoothed results in Figure 4 suggest that the stan-

dard deviation does not increase dramatically if the

part distribution is t5. No significant changes were

found in the bias of either estimator.

MODEL ASSESSMENT AND
ASSESSMENT INTERVALS

This section gives suggestions for assessing the

model [1] and applies them to the example. We can

assess the overall normality (part plus measurement)

from the production data. The normal quantile plot of

the production data from Table 1 given in the left

panel of Figure 5 shows no evidence to reject

normality. Another check on normality comes from

Eq. [4]. Because, Yi2 depends on Yi1 conditionality

through the mean with the equal variance for each

pair of measurements, we can regress yi2 onto yi1
and check the residuals for departures in normality.

A normal quantile of the residuals for the data in

Table 2 is shown in the right panel of Figure 5. Check-

ing for constant variance in these residuals is the same

as checking linearity in the measurement system.

Linearity occurs if the measurement variation rm does

not depend on the true dimension Pi of any part.

Using the methods discussed in the Measurement

System Analysis with Inspection Data Section we

can assess the measurement system without conduct-

ing a separate off-line study, but we need to specify

assessment times. We could conduct analysis on a

regular schedule, say, weekly=monthly, or when

some desired precision is achieved. The precision

can be achieved by specifying the number of

FIGURE 4 The ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðeccnon�normalÞ=VarðeccnormalÞ

p
of by the ANOVA (left panel) and the MLE (right panel) by c and b1.

FIGURE 5 Normal quantile plots of the production data (left panel) and the residuals from regressing yi2 onto yi1 (right panel).
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parts n1 or the number of second measurements n2

included in the study.

To illustrate, suppose we specify the desired pre-

cision for the ANOVA estimator. Using the ANOVA

estimate from the example as the true values,

Eq. [8], and assuming n1 is large, we can obtain the

number of second measurements, n2, required to

achieve the desired precision. If the desired standard

error for ĉc is 0.01 and the standardized inspection lim-

its are A¼ (�1.05, 2.04) and c¼ 0.175, then the num-

ber of second measurements needs to be at least 163.

To obtain standard errors in any inspection system

use Figure 2 to calculate b1. Then along with the

approximate value of c, input these values into [8].

DISCUSSION AND CONCLUSIONS

In this article we looked at the case where there is

a single response. These methods can be extended

to inspection systems with k independent character-

istics, although the independence assumption is

likely unreasonable. If all characteristics from a part

are remeasured when a single characteristic

fails, then, because of independence, some of the

repeated measurements are equivalent to randomly

selecting a part and measuring twice. For example,

suppose there are two independent characteristics

X and Y and during the production test, Y fails result-

ing in a second measurement for both X and Y. Then

the two repeated measurements for X are equivalent

to taking a random part and measuring X twice.

Other parts will have second measurements because

the production test for X failed. So, in this situation,

the ANOVA estimator will be composed of two types

of repeated measurements.

The assumption that the inspection system has k

independent characteristics is very restrictive, but

removing this assumption complicates things consid-

erably. First we need to incorporate the dependency

structure into the model [1]. Second, we note that

with multiple measurments, we are apt to get contin-

uous, ordinal, and binary characteristics determined

by the same inspection system.

Using the methodology from the Measurement

System Analysis with Inspection Data Section, we

can also assess the measurement variation in situa-

tions where multiple gauges are used in parallel

and we are trying to detect differences in variation

among the gauges. This means rm now becomes

rmi where i denotes the gauge. We assume the parts

are randomly allocated to the gauges to ensure that

over the long term the part variation is the same

for each gauge. Here we assume that there are only

two gauges but the methodology can be generalized.

If we did not have knowledge of the section

mentioned above, we would use the production data

or the first measurements to assess the differences in

the parallel gauges. This method detects differences

in rm1 and rm2 through the total variation r211 ¼ r2pþ
r2m1 and r212 ¼ r2p þ r2m2. Detection of differences

will be difficult if r2p is the dominant component of

the variation. This is the typical situation. Thus, adding

repeated measurements into this type of analysis will

greatly improve the power to detect differences in the

two measurement variation components when they

are both small relative to the part variation. The

analysis in the aforementioned section suggests that

we can use the ratio of the ANOVA estimates for each

gauge to compare rm1 to rm2i.

Modifying the inspection protocol (see Figure 1) will

change the results given in this article. One example

brought up by a referee is that some inspection proto-

cols allow two retests instead of just one. This modifi-

cation will likely inflate the variance of the ANOVA

estimator beyond what is tolerable. However, to apply

the methodology presented, we could ignore any sec-

ond retest. Presumably very few parts are measured

three times, so not much information would be lost.

We present two ways to analyze a measurement

system from inspection data. They enable to us to

avoid off-line studies such as a standard gauge

R&R. In addition, we showed that the ANOVA esti-

mator, although biased, is comparable to the MLE if

the gauge repeatability and reproducibility (denoted

as c within this article) is �0.1. If c is within the inter-

val (.1, .3), we suggest using the MLE but using the

ANOVA estimator is not unreasonable. However, if

c� .3, the bias of the ANOVA estimator is substantial

and the MLE is more efficient, but in most manufac-

turing situations, if c� .3, the measurement system

used for 100% inspection is so poor that estimator

efficiency will not be a primary concern.
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APPENDIX—PROPERTIES OF S2m

Truncated Normal

The moment generating function (MGF) for X�N

(m, r2) (see Fisher 1931) that is truncated such that

X E [b1, b2] where b2> b1 (denoted as truncated N

[m, r2; b1, b2]) is

Mðt; b1; b2Þ ¼ eltþr2t2=2
U b2�l�r2t

r

� �
� U b1�l�r2t

r

� �h i
U b2�l

r

� �
� U b1�l

r

� �� �
½A1�

where U(x) is the standard normal cumulative

distribution function. Using the MGF the first four

moments are

EðXÞ ¼ l� k0r

EðX2Þ ¼ l2 � 2k0rlþ ð1� k1Þr2

EðX3Þ ¼ l3 � 3k0rl
2 þ ð3� 3k1Þr2lþ ð�2k0 � k2Þr3

EðX4Þ ¼ l4 � 4k0rl
3 þ ð�6k1 þ 6Þr2l2

þ ð�8k0 � 4k2Þr3lþ ð�3k1 þ 3� k3Þr4

where a1 ¼ b1�l
rt

; a2 ¼ b2�l
rt

; for i¼ 0, 1, 2, 3;

ki ¼ ai2/ða2Þ�ai1/ða1Þ
Uða2Þ�Uða1Þ ; and /(x) is the standard normal

probability density function.

If Y is truncated N(m, r2), such that Y 62A¼ (a1, a2),

where a2>a1, then we can write Y¼uX1þ (1�u)X2

where X1� truncated N(m, r2; �1, a1), X2�
truncated N(m, r2; a2, 1), and u ¼ U a1�l

r

� �� �
=

1� U a2�l
r

� �
þ U a1�l

r

� �� �
then the moment generating

function for Y is

MY ðtÞ ¼ uMðt; �1; a1Þ þ ð1� uÞMðt; a2;1Þ ½A2�

where M(t; b1, b2) is given in [A1]. Thus, Y has the

same moments as X with the exception that for

i¼ 0, 1, 2, 3, ki is replaced with

bi ¼ uki �1;
a1 � l

r

� �
þ ð1� uÞki

a2 � l
r

; 1
� �

where kiðz1; z2Þ ¼
zi
2/ðz2Þ � zi

1/ðz1Þ
Uðz2Þ � Uðz1Þ

½A3�

Normal Moments

If X�N(m, r2), then the first four moments (see

Johnson and Kotz 1970) are

EðXÞ ¼ l

EðX2Þ ¼ l2 þ r2

EðX3Þ ¼ l3 þ 3lr2

EðX4Þ ¼ l4 þ 6l2r2 þ 3r4

Expectation

We define

S2m ¼ 1

n2

X
iES

X2
j¼1

ðYij � Y iÞ2 ¼
1

n2

X
iES

1

2
ðYi1 � Yi2Þ2

¼ 1

n2

X
iES

S2m: ½A4�

Each pair of measurements from different parts is

independent, so we need to determine the properties

of 1
2 Yi1 � Yi2ð Þ2. To simplify the calculations, we

notice that we can define Yij¼Xijþ l where Xij

has the same distribution as Yij but with paramter

l¼ 0. Then

E½Sim� ¼
1

2
E ðYi1�Yi2Þ2
� �

¼ 1

2
E ðXi1þ l�Xi2� lÞ2
� �

¼ 1

2
E ðXi1�Xi2Þ2
� �

¼ 1

2
E EðX2

i1� 2Xi1Xi2þX2
i2 j Xi1Þ

� �
¼ 1

2
E X2

i1� 2Xi1EðXi2 j Xi1Þþ EðX2
i2 j Xi1Þ

� �
¼ 1

2
E X2

i1� 2Xi1½ð1� c2ÞXi1�
�

þ½ð1� c2ÞXi1�2þr2t c
2ð2� c2Þ

�
¼ �1

2
þ c2þ 1

2
ð1� c2Þ2

	 

E½X2

i1� þ
1

2
r2c2ð2� c2Þ
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¼ �1

2
þ c2 þ 1

2
ð1� c2Þ2

	 

½r2� þ 1

2
r2c2ð2� c2Þ

¼ r2c2½1� c2b1=2�

Thus, the expectation of S2im is r2c2 1� c2b1=2½ �.

Variance

To calculate the variance of Sm we use Sim, defined

in [A4] to get

varðS2mÞ ¼
1

n2

� �2X
iES

varðS2imÞ ¼
1

n2
varðS2imÞ ½A5�

because the measurements on different parts are

independent. If we use the identity

varðS2imÞ ¼ E S4im
� �

� E S2im
� �2 ½A6�

we only need to calculate E S2im
� �

to determine the

variance.

E S4im
� �

¼ E
1

2
ðYi1 � Yi2Þ2

� �2
" #

¼ 1

4
E X4

i1 � 4X3
i1Xi2 þ 6X2

i1X
2
i2 � 4Xi1X

3
i2 þ X4

i2

� �
¼ 1

4
E½EðX4

i1 � 4X3
i1Xi2 þ 6X2

i1X
2
i2

� 4Xi1X
3
i2 þ X4

i2 j Xi1Þ�

¼ 1

4
E X4

i1 � 4X3
i1EðXi2 j Xi1Þ þ 6X2

i1EðX2
i2 j Xi1Þ

�
�4Xi1EðX3

i2 j Xi1Þ þ EðX4
i2 j Xi1Þ

�
..
.

¼ 1

4
�3þ 4c2 � 4ð1� c2Þ3 þ ð1� c2Þ4
h

þ6ð1� c2Þ2
�
E½X4

i1� þ
1

4
½6r2c2ð2� c2Þ

þ 6ð1� c2Þ2r2c2ð2� c2Þ
� 12ð1� c2Þr2c2ð2� c2Þ�E½X4

i1�

þ 1

4
3r4c4ð2� c2Þ2

..

.

¼ 1

4
r4c4ð3c4b1 � c4b2 � 12b1c

2 þ 12Þ

Now, combining this result with the previous

formula we have

varðS2imÞ ¼ E½S4im� � E½S2im�
2

¼ 1

4
r4c4ð3c4b1 � c4b3 � 12b1c

2 þ 12Þ

� ½r2c2ð1� c2b1=2Þ�2

..

.

¼ 1

4
r4c4ð3c4b1 � c4b3 � 8b1c

2 � c4b21Þ

¼ 2r4c4 1� b1c
2 � c4

8
ðb3 � 3b1 þ b21Þ

� �

and thus,

varðS2imÞ ¼
2r4c4

n2
1� b1c

2 � c4

8
ðb3 � 3b1 þ b21Þ

� �
½A7�
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